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ABSTRACT L

A new approach to structural reliability analysis based on
order statistics is introduced by -considering the expected time
to the first failure in a fleet of specified magnitude. Because
in the design of large structural units, such a transport air-
craft, failure of even a single unit must be prevented, reliabil-
ity analysis and design for a "mean time to failure" seems to be
an unjustified extension of the use of methods of reliability
analysis develcped for inexpensive mass-produced items of rela-
tively short service lives to the reliability assessment of ex-
pensive, large units. A method for the estimate of the expected
time to the first failure is outlined and the implications of
the use of this time in reliability analysis and design are dis-
cussed.

eor e wm + wmey snmemeel
PR S Y T e

AT AL

‘.,“,-0_ 4
0L

- TN
YAk te ' a’
E T
ERURA N NCL AL, Sk




. - - - N A ~ P B S AT Rl Tl A
I R S T A LR AR SR AL L L O TR SEAE S ENL S AL . B Vo S St S St

TABLE OF CONTENTS

Page
I . INTRODUCTION . . . . o . . L4 . . . . . . . . . . . . . .

II. RELATION BETWEEN TESTS AND STRUCTURAL PERFORMANCE

»

III. ESTIMATE OF FATIGUE LIFE (TIME TO FIRST FAILURE). . . . . 7

IV. USES OF "TIME TO FIRST FAILURE" IN RELIABILITY
ANALYS IS . . * ® L] . L] - . L * L] L] . L] .

MFERENCES L3 - . . L d L] L L L . L] L] L L] .

.
iv
pa
=
T T AT AT T
) \:_l:‘t\‘.':‘\:‘a::'y-‘ ‘.\‘-. &

o ¢ Y WO \'\\r‘ " \?‘i
o ‘1"‘-“‘;"‘,’ ‘& ‘u‘\-)' RO
N a A Y el NN



D PPN DG IE ISR I SE0E WOl S I St S S R "L T KO Tn, T S W M . A R, S, VAL 8 WAl SRSl Sall W,

ILLUSTRATIONS (S

¥
Y
PN

XA
<
1ey

3
o
S
-

£
i.

Fig. 1 Relations between 6§ = ¢ (logjgN) and log ¥ ob-
tained in various constant amplitude, program
and random fatigue tests. (from WADD Tech. Rep.
61-53, 1961)
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Fig. 2 Relation between 6§ = ¢ (loglot) and the scale
parameter o of the Third Asymptotic Distribu-
ticn of Smallest Values.

Fig. 3 computed ratios of expected time to first fail-
ure to expected mean time to failure as functlons

of § (loglot)
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I. INTRODUCTION

The practical use of the mathematical theory of probability
and its intuitive meaning in the analysis of structural relia-
bility is based on its connection with real or conceptual experi-

ments, such as the counting of exceedances of specified intengi- gg%ﬁ
ties of loads or the observation of the time-intervals between ex- R
ceedances ("return periods"), the counting of the number of fail- ﬁ%ﬁﬁ
ures in mechanical tests or in operation of critical elements of &g&g

N e,

mechanical systems, or the observation of intzrvals between fail-
ures., For the theory to be meaningful, the "statistical popula-
tion" must be clearly defined by specifying the possible outcomes
of the counts or observations. Such specification is of a physi~-
cal rather than a probabilistic nature and thus determines the
physical character of the probabilistic model. The "random vari-
able" X 1is defined over the population in such a way that spe-
cific numerical values, either discrete or continuous, are as-
signed to each outcome. A function of x representing the prob-
ability of an outcome equal to or smaller than X = x is the'"prob-
ability function" P(x), which is the probability of occurrence
of outcomes X s x, while R(x) =1 - P(x) 4is the probability of
outcomes X > x in large (theoretically infinite) numbers of ex-
periments or observations.
; .

In a physical situation the probability function is usually
unknown and has therefore to be determined either

T

(a) by statistical inference from a necessarily limited
number n of outcomes ("sample" of size n), or

(b) by theoretical reasoning based on
(1) a conceptual experiment, or
(2) a physical or engineering concept.

) X ialbd

In the first case statistically significant outcomes must
be available and presented in a form suitable for inference of
the population function P(x) f£frcm the plotting position of the
n sample points F(gm) where m =1, 2,...n.

In the second case the population function is directly de- cﬁga
rived from a probabilistic or from a physical model without ref- f}ﬁ'
- erence to experiment or observation. P

The limitation of the method of statistical inference in
structural reliability analysis can be easily illustrated by con-
sidering the mean (cumulative) frequency F(gm) of the m~th obser-




vation x_ of a continuous random variable X in a sample of size
n, 1in which all observations have been arranged in increasing or-
der

F(xm) = m/(n + 1) (1)

This expression has been proposed(l) as the "plotting position"
F(xm) of the m-th observation xp on probability paper. There-
fore, for a sample size n = 10 the range of (cumulative) fre-
quencies is enclosed between F(x;) = 1/11 = 0.091 and F(xjp) =
10/11 = 0.91; for n = 100 the range of frequencies extends rough-
ly from F(x;) = 0.01 to F(xjg9g) = 0.99. In view of the fact that
the frequency range of interest in reliability analysis is P(x) <<
10-3 or R(x) > 0.999, the fitting of observations F(xy) by P(x) in
the range 0.1 < P(x) < 0.9 does not justify extrapolation of the
fitted probability function into the significant reliability range.

Therefore, statistical inference is relevant in reliability
analysis only when sample sizes are sufficiently large to permit
a valid distinction between various possible probability functions
within the frequency range enclosed by the sample size. The mean
or median of a distribution may be accurately enough estimated on
the basis of 3 to 5 specimens, the estimate of the standard devi-
ation may require as many as 10 to 15, However for the determi-
nation of the distribution function itself by pure statistical in-
ference even one hundred specimens are certainly not enough.

Thus for instance Weibull(z) has shown that to make a signif-
icant distinction between the logarithmic-normal distribution and
the third asymptotic distribution of smallest values ("Weibull dis-
tribution"), both skew functions of apparent similarity, a sample
size larger than 1000 would be required. On the other hand, when
these two probability functions are alternatively fitted to sam-
ples of size n = 10 or 'n = 100, a range within which no distinc-
tion between them is possible, significantly different frequencies
are obtained in the range significant for reliability analysis.

Statistical inference can therefore not be applied, unless
the sample size is very large, a fact which distinguishes struc-
tural reliability theory from industrial statistics: in the lat-
ter the emphasis is on the central tendency of the probability
function and the (relatively narrow) variation about it, in the
former the main interest is in its form in the extreme ranges.

In industrial statistics methods of inference are used to differ-

entiate between statistical populations characterized by their

means and variances. In structural reliability analysis where

the shape of the distribution function is significant, sufficient-
2
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ly large sample sizes for the use of methods of statistical in-
ference arise in general only from load-observations and load-
records. Observations of material characteristics such as strength-
parameters or intervals between failures are generally limited in
number, the more severely the larger and costlier the system or
che structural element, Statistical inference as a basis of reli-
ability analysis is therefore limited to load analysis and, possi-
bly, to strength analysis of mass produced small elements that can
be tested with sufficient replication under adequate control to
produce sufficiently large, statistically homogeneous samples. On
the other hand, the distribution and associated probability func-
tions for the strength,éf large structural elements and complete
mechanical systems must be selected by probabilistic-physical rea-
soning, It is on this basis alone on which extrapolation from a
small number of test-results or observations into the reliability
range can be justified.
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II. RELATION BETWEEN TESTS AND STRUCTURAL PERFORMANCE
Statistical variables expressing the “mechan1ca1 strength" of
the material are relevant to reliability analysis only if they are
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relevant to the structural performance for which the reliability ﬁ%é
is to be established. For this purpose the results of.most stand- Pa
ard mechanical tests used either for purposes of guality controlor ;T?
for purposes of comparison of materials are useless. Qualitative t“

correlation between laboratory specimen tests and material .perform-
ance in the structure can, in general, be established only for de-
formation characteristics, such as elastic moduli, creep-rates,
yield-limit and damping on the basis of continuum . mechanical con-

cepts. Strength characteristics depend to such an extent on geom- B

etry, absolute size, surface conditions and environment that in-the 5}“
analysis only the results of .such .tests can be usrd that have:been 2&@
speclflcally designed to reflect the relevant perxformance of the .- ﬁ;?
material in the structure under the critical condition of failure iy

with which the reliability analysis is associated.

Failure in structures is-the result either of the exceedance
by a very rare load intensity of the initial resistance of the
structure to deformation instability ("collapse") or to rapid frac-
ture ("ultimate load failure"), or of the exceedance by a some-
what less rare load intensity of the "residual strength" of the
structure, which is the resistance remaining at any time t as a
result of progressive damage produced in the course of the service
during time t either by a large number of service load cycles of
relatively high frequency of occurrence ("fatigue failure"), by a
sequence of sustained service load-temperature-comblnatlons(creep-
fracture") or by a number of combined load-temperature cycles.
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j Both rapid and progressive failures are preceeded by extensive @ﬁﬁ
o3 redistribution of the internal forces in the structure; they can e
g therefore not be reproduced in tests of simple specimens. Except Ef:
od for conditions of instability failure goverened by plastic col- Lot

lapse which depends on the yield limit, "materials testing" for

oy 3
4 '
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~; reliability analysis therefore differs significantly from the . 5&;
- conventional materials testing procedures. It is not a material F3-X0AS
i parameter obtainable from small specimen tests, but the rate of *Sﬁ
'ﬁ propagation in structural members and parts of cracks from un- %ﬁg
s avoidable structural defects which emerges as the most important o
“material" parameter by which the "damage tolerance" of a struc- f:ﬁ

ture is determined. gﬁ;

N

"Damage tolerance" is the capability of a structure to oper- r

#

b
!

ate after suffering a limited extent of critical damage; it is of

%ﬁ

particular significance in aircraft structures. Structural reli- TS
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ability testing to establish "damage tolerance" can thus not be
related to conventional materials testing, since it involves the
testing of full scale structures or of primary structural parts
with respect to such aspects of material performance that are not
duplicated in standard mechanical tests on serially reproducible
small or medium sized specimens. The most significant observation
in structural reliability testing is thée expected time to the first
appearance of damage in the structure and the rate at which such
damage propagates to produce actual failure., Such observation re-
quires tests of the actual configuration of the structure under
relevant operating conditions or under suitably accelerated serv-
ice conditions; it is unobtainable by specimen tests.

l".‘.{’f e o

In view of the very small feasible number of full-scale struc- iz
tural tests or tests of structural parts the principal problem of A
structural reliability testing is the selection of a physically .
relevant reliability function for extrapolation into the reliabil-
ity range from the small number of test results. These results
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can only provide an estimate of a suitable measure of central e
tendency (mean or median value) of the "variable" such as the ex-
pected “"ultimate strength" for structures under conditions in e
which progressive deterioration of their carrying capacity by re- B
peated or sustained loads is not a significant design considera- ey
tion, or the expected life to critical damage or to failure for ok
all other conditions, However, a measure of central tendency alme '%%
isofnot much use in reliability analysis unless it can be supple- ggﬁ
mented by a well-based estimate of scatter in the form of the 2
variance or standard deviation as well as by a physically based )
argument for the selection of a specific probability function for -
extrapolation. Even this is not enough in the case of "ultimate e
strength". The probability function must be truncated somewhere [Xg
below the mean or median so as to prevent that the reliability v
analysis be governed by the spurious probabilities arising from §§§
the consideration of structures of practically impossible low Eff
strength failing under the low loads of highest frequencies of “ﬁﬁ
occurrence, Such truncation must reflect the existence of a nor- L2
mal production contrus in the process of structural assembly vhich %@
automatically ensures the elimination of unreasonably low strength &ﬁ
values. Ei
The performance of full-scale tests to determine the "ulti- {53

mate strength" or carrying capacity is already standard practice 0
in aircraft construction. The performance of full-scale fatigue
tests of gust-critical aircraft structures is gradually being
accepted as a necessity, since comparison of fatigue lives com-
puted on the basis of the linear damage accumulation theory with
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oA the test life(3) shows ratios consistently beliow unity

ey
»

[Test life/computed life] < 1

= with wide scatter about a central value of roughly 2/3. It should
F5 be noted however that comparison of the life estimated on the ba-
sis of tests with actual service life(3) also consistently pro-
duces ratios below unity

 Txy
LN

[Life to service damage/life to test damage] < 1

5
R

B
«"

(R

with wide scatter around a central value of roughly 1/3. Combining
the two ratios it would appear that the computed fatigue life of
a full-scale gust-critical aircraft structure over-estimates the
operational life by a ratio of roughly 5:1, with some scatter.

—

s
N

In view of the results of numerous series of fatigue tests
under programmed and random load amplitudes on material specimens
and small assemblies of various types, performed to investigate
the validity of the rule of linear damage accumulation, the above
result does not seem unexpected, since the majority of the results
of specimen tests show sums of cycle ratio substantially below
unity, unless specific conditions of geometry or loading have been
created to introduce residual compressive stresses of sufficiently
high intensity so as not to be affected by the applied cyclic
stresses. It should be noted however that the correlation between
the type of service fatigue failure produced in structures and
that observed in specimen tests is rather vague. Thus, for in-
stance, many structural failures are the result of fretting, a
failure type that is quite uncommon in well-designed specimen
tests in which fretting failure in the grips is rare. Hence the
above agreement between the tendency of the results of specimen
fatigue tests and of the fatigue performance of full-scale struc-
tures with respect to the values computed by the t‘inear damage
rule is somewhat unexpected and not too much reliance should be
placed on it, unless it is validated for the particular struc-
tural configuration by at least one full-scale fatigue test under
a representative load spectrum.
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IZII. ESTIMATE OF FATIGUE LIFE (TIME TO FIRST FAiLﬁRE)

An estimaté of the scatter characteristic of fatigue tests
of specimens, assemblies and structural parts, based on the rep-
resentation of test data by the logarithmic-normal distribution,
has been obtained by pooling the results from various sources
(F::. 1). It appears that a value of the standard deviation 6=0
(1og N) = 0.15 - 0.20 is representative of most results in the
long life range (N > 10° cycles). The associated coefficient of
variation based on the mean (N) is obtained from the relation

2
[.q_ébl).] = exp (2.3026 5)° - 1 (2)

On the basis of the plausible argument that the ‘structure
which fails first out of a population of structures subject to
the same mission spectra is the weakest structure in the popu-
lation and the extension of this argument to the second weakest
structure, the asymptotic distribution of smallest values' ‘with
a positive lower limit may be consideréd physically relevant as
a fatigue reliability function provided only the first few fail-
ures in a large population are used in the estimate of its param-
eters. Replacing the number N of cycles to failure as the sta-
tistical variable by the time t to fatigue failure under the
operational load spectrum, which is permissible if the interval
At between load cycles is uniform so that t = NAt, or if it is
governed by a homogeneous Poisson process with At as the mean
interval, this function has the form

t-t @
e [-(5T5) ]
i (v -t
i o
where v denotes the "characteristic" fatigue life for which

R{v) = e‘l, o is a scale factor which increases with decreasing

scatter and t, is a lower limit of the variate, the "minimum
life".

R(t) (3)

The mean frequency of the m-th failure given by Eq. (1) is

2 now compared with the probability of failure P(t,) at time ¢t
. according to Eq. (3)
? P(t} = 1-R(t) = - (4)
m ™ n+l
and therefore
‘ #m - to ’ m
xp [ ( v -t ) ] n+l (5)
o
7
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It follows that

I

o
ol.

n 1/a -
,\_;: t,o= t, +v-t) [-m Q-9 (6) -
N The time to the first failure is obtained for m = 1. ﬁ%%

o
PEX
o

g
oA
L)

)

s

Disregarding, in first approximation, the lower limit t, o
the reliability function has the form :
u.-,, CL
£ R(E) = exp [~ (t/0)°] (7)

The expected time to the first failure (expected shortest life)

3
L

3
A

;; is obtained from Eq. (6) with to = 0. i{;
;:Z =V [" fn <l - n+l>] (8) %

3 Introducing the relation between o and the coefficient of E::
variation o (log t) fuda:
o(log t) = n/(2.3034/6) (9)
which has been plotted in Fig. 2, and the relation between the s
mean t and the characteristic value v b

N Gsh

t = vI(l+ 1/0) (10) ggﬁ

3O

wid

Eq.(8) can be transformed into a relation between the ratio (t./ g
) of the expected time to first failure to the expected (meain) e
time to failure and the standard deviation o(log t). This re- 2
lation is plotted in Fig. 3 for the population sizes n = 20, 50, £
200 and 1000. )
B

oI

Using these diagrams it can be seen that in a fleet of mod-
erate size, such as n = 50, the expected time to the first fail-
ure for 0.15 < o(log t) < 0.20 is 0.35% > t; > 0.25%, For a
larger fleet of n = 1000 and the same range of scatter the ex-
pected time to the first failure 0.13t > t; > 0.08t. Hence, de-
pending on the fleet size, observed times to failure of between
one~-third and one~tenth of the mean time to failure cannot be
considered unusual., In fact, in view of the scatter associated
with the expected times to first failure, values smaller than
the estimate of the expected time t; will frequently be ob-
served. 8Since the time to first failure is an extremal phenom-
enon, it is to be expected that its distribution is an extremal
distribution of smallest values, which is the condition of sta- ’j
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bility characterizing such distributions.

Within the range of 0.15 s o(log t) < 0.20 the expected times ﬁﬁgﬁx

to the second failure are 0.46% > t, > 0.34t for n = 50 and 0.21E (N
> t, > 0,14t for n = 1000, This implies mean intervals between s
the first and second failures of 0.11f 2 (t, - t3) = 0.09t for R
= . > N 2. = . X .
n = 50 and 0,08t = (t3 ~ t5) 0.06€ for n = 1000 Eﬂ?ﬁﬁ

If the expected time to the first failure t; is specified .as
a design criterion, the mean time to failure for which a fleet
f has to be designed becomes a function of the anticipated size of

the fleet. Thus; for instance, for an anticipated scatter in the

[ fatigue performance of the structure characterized by o(log t) =
0.15 the design mean time to failure is € ~ 3t; for n = 50 and
t ~ 7.5t; for n = 1000. The associated expected intervals to the
second failure are therefore roughly 0.3t; and 0.53t; respectively.
It is obvious that because tj is a statistical design for: an ‘ex*
pected value of t; also implies a certain risk of failure which
can be expressed by a reliability function.

Y

syt e
argnd '.QJ\’\,

For n = 2 (smallest sample size) the value of t; is fairly
close to the mean £ (0.88t > t; > 0.81F). The expected life to
first failure in such sample size provides hardly more informa-
tion concerning the expected life to first failure in an associ-
ated population than the mean itself,
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Iv. USES OF "TIME TO FIRST FAILURE" IN
RELIABILITY ANALYSIS

5

o
1

The difference between sample size and fleet size must be
considered in the planning and evaluation of so-called "lead
tests" in which a very small number of units of the fleet are
subjected to tests -ander an accelerated service spectrum start~
ing simultaneously or in advance of the operation of the fleet.
In order for the first-~failure in the lead test to occur before
the first failure in the fleet the relation must be satisfied
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b <t )+t or E = B 1 (e, + yE) (11)
where EL is the required mean time to failure in the lead group
of size np, ty the interval between the start of the lead tests
and the start of the service operation, and the coefficients B _
and y are functions of n obtained from tj37 = p%; and T = yt.
Thus for o(log t) = 0.15, ny = 2, n =50 and t, = 0: ty < 0.4¢t,
a result which indicates that the necessary intensification or
acceleration of the lead test load spectrum must be such as to
reduce the mean time to failure by a factor of more than 2.5 if
the lead test is to be of any use. For a large fleet (n = 1000)
t;, < 0.15% which implies a reduction of the mean time to failure
is the lead test by a factor of 6.7.

N AN EL S A A
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A considerable advantage of the use of the time to first
failure in reliability analysis arises from the fact that the
precision of its estimate increases with n more rapidly than
the precision of the estimate of the mean or of the character-
istic value. Since the probability for the minimum of n ob-
servations from an initial extreme value distribution to exceed

t; is tl a )
Riey) = e [~ £) ] e

where t; is the expected value of t; and the scale factor a
remains unchanged, it is obvious that the distribution of the
minima contract with increasing number of extremes. The vari-
ances of the minimum of the smallest values
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decrease with increasing n.

Dy

In another application of concepts of order statistics in
reliability analysis the two shortest observed times to failure,
being considered the weakest members of a sample, might, in first
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approximation, beé considered to belong to an extremal distribu-
tion of unkhown parameters. A rough estimate of the two para-
meters v and & of this distribution can be obtained by solv-
ing the two Egs. (6) for m = 1 and m = 2 under the simplifying
assumption ty = 0. The resulting distribution can be used to
predict the expected times to first failure in larger samples.

Thus, for instance, the shortei% times to fa igue damage
observed in a sample of 40 aircraft ) were t; = 1500 hrs and
ty = 1733 hrs. Solving the two equations

1l/a
1 V[' “‘(1 =Zl'1'>]

1
=v[- (=)

the values for the parameters of the extremal distribution are
v =1.78 t, = 3100 hrs and ¢ = 5.1 or oc(log t) = 0.11; therefore
t ~ 0.92 x 3100 = 2850, ' Hence, for a fleet of n = 200 the ex-
pected time to the first fatigue damage of the type observed
would be t; = 0.38% = 1100 hrs.

t

/o
t

In view of the considerable difference between the mean or
characteristic times to failure and the expected time to first
failure, and of the effect of the parameter a on this differ-
ence, the fatigue-sensitivity factor of the structure might
be related to the expected times to first failure in a fleet of
a certain size rather than to the risk of failure of mean times
to failure in a fleet of indeterminate size. If vy denotes
the expected time to ultimate load failure associated with an
exponential reliability function (with a = 1), and Ve the ex-
pected time to fatigue failure with o = ap, the fat%gge sensi-
tivity factor £ based on expected times to failure

r a a_ -1
F F t F
f(t) = X = V. < V. ) VU (14)
U F F

while an alternative definition of the fatigue sensitivity factor
of the form

t vy[- @ (2 - -l'-)] v G
£ = t—if = i‘f_ - (1 3 ;_g_ ]i/ap = 7;1, ["‘“ (1“?1'}-'1')]
. (15)
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Ei relates the fatigue sensitivity at time t; to. fleet size., It is §§
% obvious that. because of the short times t; to first failure the P
ot constant fatigue sengitivity at t; according:to Eq. (14) is much o

lower than that defined by Eq. (13) for t>t; which is ap in- e
I credasihg fuhction of time. This is mainly due to the fact that 5
%ﬁ the expected time to the first failure for the. exponential dis- E§§
e tribution (¢ = 1) characteristic of ultimate load failures is a Py
@ much smaller fraction of the expected time to failure than for i;
. the éxtreémal distributions (6p >1) characteristic for fatigue %
it failures. Thus, for instance, for n = 50 the expected time to

.
>

A
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first failure for an exponential reliability function is t;, =
0.0202 vy, while for n = 200 this time is tj = 0.005 vy. There-
fore very long mean times to failure that are governed by chance

do not provide adequate safety against premature failures even
in medium size populations.
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Comparing the above expected times to first ultimate load
failure with those computed for fatigue failures it appears. that
in order to ensure equal expected times to first failure for ulti-
mate load and fatigué failure (disregarding the fact that for long
operational periods ultimate load failures.become failures. of.the
fatigue-damaged structure, because of the relatively .short. times-
considered) the ratios between vy; and vp required to prevent pre-

mature chance failures are (vU/vF);>10 already for n = 50 and much
higher for larger fleets. . :
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The above analysis illustrates the ambiguities. encountered
in theé comparison between life estimates based on tests and fa-
tigle lives observed in service, and the necessity of comparing
not mean lives but expected lives to first failure in the relia-
bility analysis of even a moderately large population based. on
the results'of a very small number of tests. Comparison of means ¢
alone are quite misleading in the reliability assessment of such .
a population particularly when, as in the case of large struc-
tures, the purpose of the reliability analysis is the prevention
of failure of even a single member of the population. Because
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this requirement seems to be the only rational requirement for 5

the design of structures failure of which is in effect, inadmis- ﬁ$§

sible, such as large transport aircraft, it appears that design ﬁg&y

for a specified time to first failure associated with a reason- e

ably low risk should replace the current approach of design for SR

a specified mean service time coupled with a vague "scatter fac- %%2

tor", ﬁg
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